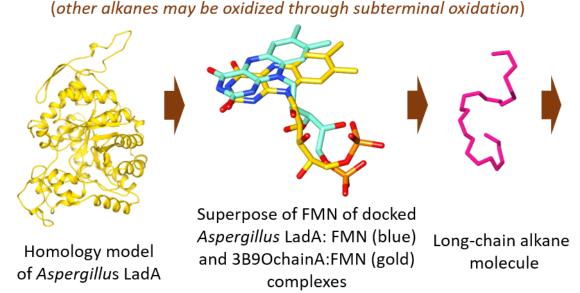
In silico identification and molecular docking analysis of long chain alkane monooxygenase (LadA) in filamentous fungus Aspergillus flavus

Madushika Perera¹, Sulochana Wijesundera¹, C D Wijayarathna², Gamini Seneviratne³ and Sharmila Jayasena^{1*}

¹ Department of Biochemistry and Molecular Biology, University of Colombo ² Department of Chemistry, University of Colombo ³ National Institute of Fundamental Studies, Kandy

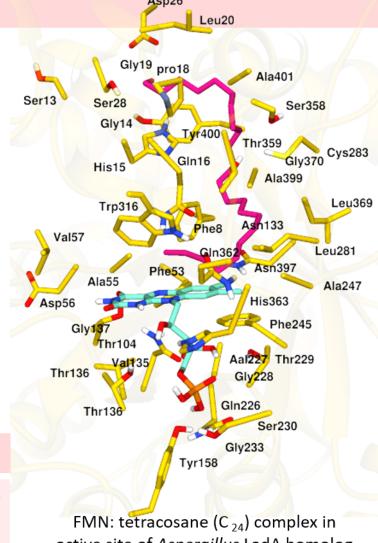
Introduction

Aspergillus sp. MM1 rapidly degrades long-chain n-alkanes $(> C_{16})$ in crude oil. This led to the identification and characterization of an enzyme for the initial oxidation of long-chain *n*-alkanes using computational methods


Methodology

A. Flavus NRRL3357 homolog of Geobacillus LadA was identified by BLAST (NCBI). A quality model was prepared by SWISS-MODEL server. FMN and alkanes were retrieved Protein Data Bank geometrically optimized by ORCA. Method was validated by redocking Geobacillus LadA crystal structures by AutoDock Vina. Binding of long-chain alkanes to Aspergillus LadA was determined by validated method. Analysed by UCSF Chimera and BIOVIA discovery-studio

Results


Aspergillus LadA successfully captured n-alkanes, C16 to C30 and C36

pi-alkyl interaction between FMN co-factor and the terminal carbon atom of C₁₆ - C₂₄ and C₃₆ indicate terminal oxidation of those long chain-alkanes when bound to the Aspergillus LadA: FMN complex

Conclusions

This study reports the presence of a LadA in Aspergillus flavus for longchain alkane oxidation. This finding supports future biotechnological applications in bioremediation of petroleum hydrocarbon pollution

active site of Aspergillus LadA homolog

